uefi-rs 6

The story of a low-level Rust library

Gabriel Majeri - February 2025

What is uefi-rs?

* uefi-rs is alow-level open source

Rust library for interacting with -
compatible firmware.

I’ve started this project back in 2017
and now it has grown to 850.000+
downloads on crates.io and 1400+ GH
stars.

This talk will be about what uefi-rs
IS, what it does, how It started and what
you can do if you want to become a
successful open source maintainer.

— O @ rust-osdev / uefi-rs 1.4k

<> Code () Issues 25

8 uefi-rs ruw

¥ main ~

e phip1611 Merge pull request #155... &

B .cargo

B .github

B8 book

B8 docs

BB nix

BB template
BB uefi-macros

BB uefi-raw

lic

o +

Q&8 -~

¥ Bugs 2 {9 Pull requests 6
57 Edit Pins ~ & Watch 28 ~
O Go to file + <> Code ~

3_9

several unrelated cleanups

chore(deps): update crat...

release: uefi-raw-0.10.0, ...

Update timeline section ...

niv: update dependencies

release: uefi-0.34.1

release: uefi-raw-0.10.0, ...

uefi-raw: Add docstrings...

53b822e - 5 days ago @

3 years ago

last week

2 weeks ago

4 months ago

4 months ago

2 weeks ago

2 weeks ago

last week

(> Actions

% Fork 163 v

+ -~ | O 8 -

{53 Settings

v7 Star 1.4k -

About 3

Rusty wrapper for the Unified
Extensible Firmware Interface
(UEFI). This crate makes it easy
to develop Rust software that
leverages safe, convenient, and
performant abstractions for UEFI
functionality.

& rust-osdev.comjuefi-book

rust osdev uefi

00 Readme
58 Apache-2.0, MIT licenses found
A~ Activity

(£] Custom properties

http://crates.io

What is UEFI?

The startup process

 \WWhen you press the power switch and turn on your computer, the various
hardware devices need to be initialized in order for the user-installed
operating system to be loaded into memory and executed.

* Furthermore, the OS kernel needs a generic way to with the
hardware components, at least until it loads its own drivers and starts reading
the hardware configuration (e.g. through PCI).

The Basic Input/Output System (BIOS)

* The solution is to provide such functionality
through firmware, usually embedded into the
motherboard as a Read-Only Memory (ROM)
modaule.

* One of the earliest examples of such an approach
is the Basic Input/Output System (BIOS), found in
the original IBM Personal Computer.

* The interface of the original system was reverse
engineered by other companies and then started
to be used in other PC clones.

The Basic Input/Output System (BIOS)

Example of BIOS functions

Common functions

° OS d evelo pers COU Id rely On th e Unfortunately, RBIL does not clearly indicate which BIOS functions are "generic" (in some
B I OS 'tO I n It I al Ize th e HW, |Oad ;‘Sst:::q:z:]slfl);;ui:c:irz Slzfxr:)tvgrst;r:.e, so if you go back far enough in time you can us
their kernels into memory and © INT OX10, AH — 1 - set up the cursor
hand over exec ution Wh | |e o INT 0x10, AH = 3 -- cursor position

. . e INT Ox10, AH = OxE -- display char
IeaVI n g th e SyStem I n a e INT Ox10, AH = OxF -- get video page and mode

e INT Ox10, AH = 0x11 -- set 8x8 font
e INT Ox10, AH = 0x12 -- detect EGA/VGA
e INT Ox10, AH = 0x13 -- display string

o The B I OS Oﬁe red q U |te a feW e INT 0x10, AH = 0x1200 -- Alternate print screen
abStraCt/ eneriC runtlme e INT Ox10, AH = 0x1201 -- turn off cursor emulation
g e INT 0x10, AX = 0x4F00 -- video memory size

SerVi ces (Utl I |ty proced U reS) f()r o INT 0x10, AX = Ox4F01 -- VESA get mode information call

programmers.
Source: OSDev wiki

https://wiki.osdev.org/BIOS

The Basic Input/Output System (BIOS)

Example of BIOS configuration interface

CMOS Setup Utility - Copyright (C) 1984-1999 Award Software

> Standard CMOS Features > Frequency/Voltage Control
> Advanced BIOS Features Load Fail-Safe Defaults
» Advanced Chipset Features Load Optimized Defaults
> Integrated Peripherials Set Supervisor Password
> Power Management Setup Set User Password
» PnP/PCI Configurations Save & Exit Setup
» PC Health Status Exit Without Saving
Esc @ Quit R : Select Item
F18 : Save & Exit Setup

Time, Date, Hard Disk Type...

So what’s the problem with the BIOS?

 The BIOS code is written to run in 16 bit (real) mode. Most modern OSes run
on 32-bit protected mode or more commonly nowadays 64-bit long mode.

 The BIOS interface was, for most of its history, and
; there’s no motherboard implementing “all” of the possible
BIOS functions. It’s also tricky to detect which features are available and
which are missing (without having a hardware database prepared in advance).

* The BIOS lacks support for advanced features (e.q. digital signatures
for firmware code).

Coming up with a better BIOS
AKA how UEFI came to be

e |nthe 1990’s, HP and started
developing the 64-bit
architecture (which was
backwards-incompatible with

X86-32).

Intel®
I[tanium®
Platforms
64 bit

»
=
2
st
S
=
-
O
0
e
7))

— EFI only
'..% way to boot
i tamum®
* They needed a BIOS-like :
interface adapted for the large, gL —
64_bit Server SyStemS. UEF-ISpecific‘ations.-‘h-tt:~:.-;".""'u'-.;"-.'uf:.*:;'.uefi.or; b s

e The Extensible Firmware Interface
(EFI) standard was thus born.

Unified EFI

e |n 2005, Intel donated the EFI
specification to the Unified EF|
Forum, an alliance of several
technology companies and BIOS
manufacturers.

e |n 2006, version 2.0 of the UEFI
specification was released,
adding supyport for cryptographic
primitives and security.

UEFI goes viral

Boot ROM evaluates iBoot signature

 When Apple switched to using — kl B
Intel processors in 2006, they also B
adOpted UEFI fOr ﬂrmware' T2 kernel cache evaluatels UEFI firmware signature
 Nowadays UEF! Is used l
everywhere (especially on the UEF firmware
desktop/laptop/server platformsy): 2 chip

x86 PCs, Mac devices, ARM
servers etc.

Intel CPU

UEFI firmware evaluates boot.efi signature

* Could be used for embedded as |
We” (Iﬂ theOry), bUt |t,S pretty boot.efi evaluates macOS immutable kernel signature
heavyweight and usually overkill. |

How is UEFI structured?
The Internals

 UEFI binaries (bootloaders/
kernels/drivers) are actually
executables with some
weird peculiarities

 The main entry point of the
executable is given a pointer to
the UEFI “system table”, which
provides a set of function
pointers to built-in functionality

4.1.1 EFI_IMAGE_ENTRY POINT

Summary
This is the main entry point for a UEFI Image. This entry point is the same for UEFI applications and UEFI drivers.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_IMAGE_ENTRY_POINT) (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable

b

Parameters

ImageHandle
The firmware allocated handle for the UEFI image.

SystemTable
A pointer to the EFI System Table.

Description

This function is the entry point to an EFI image. An EFI image is loaded and relocated in system memory by the
EFI Boot Service EFI_BOOT_SERVICES.Loadlmage() . An EFI image is invoked through the EFI Boot Service
EFI_BOOT_SERVICES.StartImage().

typedef struct {
EFI_TABLE_HEADER Hdr;
CHAR16 *FirmwareVendor;
UINT32 FirmwareRevision;
EFI_HANDLE ConsoleInHandle;
EFI_SIMPLE_TEXT_INPUT_PROTOCOL *Conln;

4.3. EFIl System Table

What is uefi-rs?

What is uefi1-rs?

* uefi-rsis an open source Rust crate (library) providing safe and performant

wrappers for the most commonly-used protocols (interfaces) and data
structures from the UEFI specification.

. meant to be exhaustive nor un-opinionated; we want to define what we
believe to be the best way to write UEFI-compatible apps and drivers using

Rust, and this means we still have a long way to go to covering the whole
UEFI API (so far).

uefi-rs example code

. " QEMU v-,Q
use std::os::uefi as uefi_std; Machine View
9 use uefi::runtime: :ResetType; # vefi-rs test rummer
10 use uefi::{Handle, Status}; EFI 2.7.0
1 raphics mode #0: 25 rows by 80 columns
12 /// Performs the necessary setup code for the “uefi’ crate. raphics mode #1: 31 rows by 100 columns
13 fn set efi_crate
oo s . o emory Allocation Test
14 let st = uefi_std::env::system_table(); Sorted vector: [-5, 0, 4, 16, 231
15 let ih = uefi_std::env::image_handle();
16 llocated memory of type LoaderData at 0x6904000
. = Found information for 41 memory descriptors
17 // Mandatory setup code for "uefi crate. Boot services test passed.
18 unsafe { EFI Protocol Searching test
19 uefi::table::set _system table(st.as_ptr().cast()); - Number of handles which implement the SimpleTextOutput protocol: 3
20 Debug Support Protocol
21 let ih = Handle::from_ptr(ih.as_ptr().cast()).unwrap();
22 uefi::boot::set_image_handle(ih);
rotocol test passed.
23 ¥ CS-2 encoding test passed.
24 }
25 Failed to retrieve pointer state

26 v fn main() {

27 println! ("Hello World from uefi_std");

28 setup_uefi_crate();

29 println! ("UEFI-Version is {}", uefi::system::uefi_revision());

30 uefi::runtime::reset(ResetType: :SHUTDOWN, Status::SUCCESS, None);

31 ¥

Features offered by uefi-rs

* Scripts/tools for creating . ef 1 binaries

 Macros for defining UEFI-compatible entry points
 Wrappers for system (boot/runtime services) tables
* Protocol (interface) localization and initialization

* Protocol definitions for various hardware devices (console, graphics output, block
devices, filesystems, network controllers etc.)

* |Lots of examples/sample code and unit tests for many standard UEFI features (is kinda
like a conformance spec; we discovered plenty of bugs in the QEMU/OVMF
implementation along the way)

Why choose uefi1-rs?

The Rust-UEFI ecosystem

crates.io efi . © Browse All Crates | & Login with GitHub

* uefti-rs is notthe first nor the Search Results for ‘ef
oldest Rust library for interacting

] . Displaying 1-10 of 544 total results Sort by Relevance v
with UEFI-compatible hardware.
efi vo0.31 All-Time: 8,061
Ergonomic Rust bindings for writing UEFI applications Recent: 1,215

e However, at the time | created > Updated:over year ae
the repo, other crates were elther
(providing little to L
no abstraction or convenience et over 1yt
wrappers) or were badly
documented (making it hard for of_signer vo2s

new users to start using them).

Updated: 2 months ago

uefi-rs vs. the rest

ED 4 files changed +51 -0 lines changed ™ Top Q. Search within code

 From the very first commit, v rexomeng ousees (10 -

u e .F i _ r. S fOCUSGd On providing ij There is also the ‘x86_64-uefi.json’ file, which is

clear documentation and easy- -
to-understand example code. [

16 — [Python 3] (https://www.python.org)
17 - [OVMF] (https://github.com/tianocore/tianocore.github.io/wiki/OVMF):

o The WhOIe pOi n't Of the Iibrary 18 You need to extract ‘OVMF_CODE.fd' and ‘OVMF_VARS.fd' to the same directory as the

“build.py” file.

WaS to make it easy for anyOne 19 inAt::r:::::l)f/,ileiljstau OVMF using your distro's package manager and change the paths
to get started with developing x

21

ap pS WhiCh Can run On U EFI— Z It's as simple as running the “build.py" script with the “build® and "run’ arguments:
based environments. x e

28 You can also pass ‘doc’ for generating documentation, or “clippy” to run Clippy.

uefi-rs vs. the rest

& DOCS.RS Q@ uefi-0341 V¥ 4 Platform V M Feature flags Rust ¥ Q Find crate
. . uefi Crate uefi & % © v
* uefi-rs focuses on simple and
n " [n n All Items . . .
eﬁ I C I e n t a b St ract I O n S m a kl n I t v Rusty Wrapper for the Unified Extensible Firmware Interface.
J g Sections This crate makes it easy to develop Rust software that leverages safe, convenient, and performant abstractions for

UEFI functionality.

|] |]
easy to get started with writin
See the Rust UEFI Book for a tutorial, how-tos, and overviews of some important UEFI concepts. For more details of

Value-add and Use Cases
- UEFI, see the latest UEFI Specification.

boot loaders, drivers, kernels et

Minimal Example
MSRV

[]]
et C n W I t h O u t h aV I n g to re ad API/User Documentatio... Minimal example for an UEFI application using functionality of the uefi crate:

Library Structure & Tips

through the UEFI specification i

Tables

befo re h a n d . Protocols use uefi::prelude::x;

Optional Cargo crate f...

Discuss and Contribute #[entry]
fn main() -> Status {

Comparison to other Pro...) .
uefi::helpers::init().unwrap();

Rust std implementat...

Some general software engineering advice

* Designing the “perfect” interface takes time and many iterations

Additional error data in Result + some API cleanup and clarification #/8 Edit <> Code ~

FoMerged naster ¢ result-cleanup (L onJan 4, 2019 © uefi-macros-v0.6.1 ®~

L) Conversation 20 -0- Commits 11 [F) Checks o0 Files changed 30 +460 —-337
W .)) Reviewers — review now @
) HadrienG2 (Hadrien G.) on Jan 3, 2019 . edited ~ Contributor / *°*
5 GabrielMajeri v
This PR fixes #70 by adding support for additional error data to our Result type. As a result, usage of raw
core::result::Result can now be restricted to functions which do not call into UEFI. Assignees — assign yourself 3
Since most functions do not return additional error data, the associated type parameter is optional with a default of () .
After some thought, | think that the main output should probably get the same treatment, as a large amount of "setter" UEFI Labels i3

functions do not emit anything more than a status code. bug x) (enhancement x

While | went around the codebase to tweak every API entry point definition accordingly, | noticed a couple of issues here and
there. Some entry points were in minor disagreement with the spec's semantics, while others did something wrong and Projects £33
dangerous. I'll clarify those changes as PR comments.

As | noticed some lifetime errors among these, | thought now might be a good time to use clearer lifetime parameter names Milestone i3
in order to clarify the semantics of lifetime-based code. Result's generic parameters also got the same treatment.

@ & Development @

@ Maybe uefi::Result should allow for custom e...

E+ HadrienG2 (Hadrien G.) added 9 commits 7 years ago

Naotificatinne Cletomize

uefi_raw
0.10.0

All Items

Crate Items
Modules
Macros

Structs

Type Aliases

Unions

Crates

uefi_raw

Type ‘S’ or ‘/’ to search, ‘?’ for more options...

Crate uefi_raw

Source

v Raw interface for working with UEFI.

Settings

(?)

Help

Some general software engineering advice

* Provide escape hatches for when people need custom behaviors

Summary

This crate is intended for implementing UEFI services. It is also used for implementing the uef crate, which provides a safe

wrapper around UEFI.

For creating UEFI applications and drivers, consider using the uefi crate instead of uefi-raw.

Modules

capsule UEFI update capsules.
firmware_storage Types related to firmware storage.
protocol Protocol definitions.

table Standard UEFI tables.

time Date and time types.

Macros

Some general software engineering advice

 Upstream and reuse as much as possible

— Q rust-lang / rust % 101.5k v Q Type (/] to search

{> Code

(©) Issues 5k+ 19 Pull requests 71 (> Actions Projects 9 © Releases 135

Tracking issue for the "efiapi” calling convention #65815

© Closed f~ #105795

f iS5 roblabla opened on Oct 25, 2019 - edited by roblabla Edits ~

Tracking issue for the efiapi calling convention, added in PR #65809. The feature gate name is abi_efiapi .

The efiapi calling convention can be used for defining a function with an ABI compatible with the UEFI Interfaces as defined
in the UEFI Specification. On the currently supported platform, this means selecting between the win64 ABI or the C ABI
depending on the target architecture.

Usage

extern "efiapi" fn func() {..} (0]

Assignees

No one assigned

Labels

A-ABI A-FFI B-uns!
CC-tracking-issue) O-U

S-tracking-ready-to-stak

disposition-merge

(finished-final-comment-|

Type

How did uefi-rs start?

How | got here

It took a while

e Got interested in OS dev around 2014

o Started learning about and playing with writing my own operating system
kernel from scratch in 2015, following the tutorials on OS Dev.org

* Figured out pretty quickly that | wasn't going to get anywhere building a
whole OS on my own

https://wiki.osdev.org/Expanded_Main_Page

How | got here
Step by step

* | thought | could at least put some code on GitHub, maybe others will find it
useful for something

* Created uefi-cpp, the precursor to uefi-rs, in October 2016

* Started ueti-rs in November 2017, after getting too annoyed with C++ and
learning some Rust

Why Rust?

* |f you’ve never worked with Rust before, you might be wondering why would
anyone start a project in such a (young) programming language

* |f you've worked (professionally) with C++ for enough time, you’ll know it has plenty
of issues (memory safety, concurrency, incomprehensible compiler errors, syntactic
ambiguity, lack of a standard build/packaging system etc.)

Why Rust?

Even more reasons to switch to Rust

* You might also have heard that the
Rust community is very active and
very loyal to the language

* |I’d argue there are good reasons
for that :)

Technology - Admired and Desired

Programming,
scripting, and
markup

languages

JavaScript, Python and SQL are all
highly-desired and admired programming
languages, but Rust continues to be the
most-admired programming language
with an 83% score this year.

Conclusions

* Building this library was hard work, but it was fun and I've learned a lot of
things from it

 Open source is a lot about the community, and it’s a great way to make

friends with random people from around the world. On uefi-rs we’ve had
contributors from: France, Germany, USA (New York specifically), Japan etc.

Conclusions

 The fact that it became popular is also a lot thanks to luck. | never expected it
to go anywhere when | first open sourced the repo!

* Expect most things that you finish and/or publish to be inconseguential and
nobody will care about them (except for you, maybe)

Thanks for listening!

Any questions?

