
Gabriel Majeri - February 2025

uefi-rs
The story of a low-level Rust library



What is uefi-rs?
• uefi-rs is a low-level open source 

Rust library for interacting with UEFI-
compatible firmware.


• I’ve started this project back in 2017 
and now it has grown to 850.000+ 
downloads on crates.io and 1400+ GH 
stars.


• This talk will be about what uefi-rs 
is, what it does, how it started and what 
you can do if you want to become a 
successful open source maintainer.

http://crates.io


What is UEFI?



The startup process

• When you press the power switch and turn on your computer, the various 
hardware devices need to be initialized in order for the user-installed 
operating system to be loaded into memory and executed.


• Furthermore, the OS kernel needs a generic way to interface with the 
hardware components, at least until it loads its own drivers and starts reading 
the hardware configuration (e.g. through PCI).



The Basic Input/Output System (BIOS)

• The solution is to provide such functionality 
through firmware, usually embedded into the 
motherboard as a Read-Only Memory (ROM) 
module.


• One of the earliest examples of such an approach 
is the Basic Input/Output System (BIOS), found in 
the original IBM Personal Computer.


• The interface of the original system was reverse 
engineered by other companies and then started 
to be used in other PC clones.



The Basic Input/Output System (BIOS)
Example of BIOS functions

• OS developers could rely on the 
BIOS to initialize the HW, load 
their kernels into memory and 
hand over execution while 
leaving the system in a known 
state.


• The BIOS offered quite a few 
abstract/generic runtime 
services (utility procedures) for 
programmers.

Source: OSDev wiki

https://wiki.osdev.org/BIOS


The Basic Input/Output System (BIOS)
Example of BIOS configuration interface



So what’s the problem with the BIOS?

• The BIOS code is written to run in 16 bit (real) mode. Most modern OSes run 
on 32-bit protected mode or more commonly nowadays 64-bit long mode.


• The BIOS interface was, for most of its history, undocumented and 
unstandardized; there’s no motherboard implementing “all” of the possible 
BIOS functions. It’s also tricky to detect which features are available and 
which are missing (without having a hardware database prepared in advance).


• The BIOS lacks support for advanced security features (e.g. digital signatures 
for firmware code).



Coming up with a better BIOS
AKA how UEFI came to be

• In the 1990’s, HP and Intel started 
developing the Itanium 64-bit 
architecture (which was 
backwards-incompatible with 
x86-32).


• They needed a BIOS-like 
interface adapted for the large, 
64-bit IA64 server systems.


• The Extensible Firmware Interface 
(EFI) standard was thus born.



Unified EFI

• In 2005, Intel donated the EFI 
specification to the Unified EFI 
Forum, an alliance of several 
technology companies and BIOS 
manufacturers.


• In 2006, version 2.0 of the UEFI 
specification was released, 
adding support for cryptographic 
primitives and security.



UEFI goes viral

• When Apple switched to using 
Intel processors in 2006, they also 
adopted UEFI for firmware.


• Nowadays UEFI is used 
everywhere (especially on the 
desktop/laptop/server platforms): 
x86 PCs, Mac devices, ARM 
servers etc.


• Could be used for embedded as 
well (in theory), but it’s pretty 
heavyweight and usually overkill.



How is UEFI structured?
The internals

• UEFI binaries (bootloaders/
kernels/drivers) are actually PE/
COFF executables with some 
weird peculiarities


• The main entry point of the 
executable is given a pointer to 
the UEFI “system table”, which 
provides a set of function 
pointers to built-in functionality



What is uefi-rs?



What is uefi-rs?

• uefi-rs is an open source Rust crate (library) providing safe and performant 
wrappers for the most commonly-used protocols (interfaces) and data 
structures from the UEFI specification.


• Not meant to be exhaustive nor un-opinionated; we want to define what we 
believe to be the best way to write UEFI-compatible apps and drivers using 
Rust, and this means we still have a long way to go to covering the whole 
UEFI API (so far).



uefi-rs example code



Features offered by uefi-rs

• Scripts/tools for creating .efi binaries


• Macros for defining UEFI-compatible entry points


• Wrappers for system (boot/runtime services) tables


• Protocol (interface) localization and initialization


• Protocol definitions for various hardware devices (console, graphics output, block 
devices, filesystems, network controllers etc.)


• Lots of examples/sample code and unit tests for many standard UEFI features (is kinda 
like a conformance spec; we discovered plenty of bugs in the QEMU/OVMF 
implementation along the way)



Why choose uefi-rs?



The Rust-UEFI ecosystem

• uefi-rs is not the first nor the 
oldest Rust library for interacting 
with UEFI-compatible hardware.


• However, at the time I created 
the repo, other crates were either 
raw bindings (providing little to 
no abstraction or convenience 
wrappers) or were badly 
documented (making it hard for 
new users to start using them).



uefi-rs vs. the rest 

• From the very first commit, 
uefi-rs focused on providing 
clear documentation and easy-
to-understand example code.


• The whole point of the library 
was to make it easy for anyone 
to get started with developing 
apps which can run on UEFI-
based environments.



uefi-rs vs. the rest

• uefi-rs focuses on simple and 
efficient abstractions, making it 
easy to get started with writing 
boot loaders, drivers, kernels 
etc. without having to read 
through the UEFI specification 
beforehand.



Some general software engineering advice
• Designing the “perfect” interface takes time and many iterations



Some general software engineering advice

• Provide escape hatches for when people need custom behaviors



Some general software engineering advice
• Upstream and reuse as much as possible



How did uefi-rs start?



How I got here
It took a while

• Got interested in OS dev around 2014


• Started learning about and playing with writing my own operating system 
kernel from scratch in 2015, following the tutorials on OS Dev.org


• Figured out pretty quickly that I wasn’t going to get anywhere building a 
whole OS on my own

https://wiki.osdev.org/Expanded_Main_Page


How I got here

• I thought I could at least put some code on GitHub, maybe others will find it 
useful for something


• Created uefi-cpp, the precursor to uefi-rs, in October 2016


• Started uefi-rs in November 2017, after getting too annoyed with C++ and 
learning some Rust

Step by step



Why Rust?
• If you’ve never worked with Rust before, you might be wondering why would 

anyone start a project in such a (young) programming language


• If you’ve worked (professionally) with C++ for enough time, you’ll know it has plenty 
of issues (memory safety, concurrency, incomprehensible compiler errors, syntactic 
ambiguity, lack of a standard build/packaging system etc.)



Why Rust?
Even more reasons to switch to Rust

• You might also have heard that the 
Rust community is very active and 
very loyal to the language


• I’d argue there are good reasons 
for that :)



Conclusions

• Building this library was hard work, but it was fun and I’ve learned a lot of 
things from it


• Open source is a lot about the community, and it’s a great way to make 
friends with random people from around the world. On uefi-rs we’ve had 
contributors from: France, Germany, USA (New York specifically), Japan etc.



Conclusions

• The fact that it became popular is also a lot thanks to luck. I never expected it 
to go anywhere when I first open sourced the repo!


• Expect most things that you finish and/or publish to be inconsequential and 
nobody will care about them (except for you, maybe)



Thanks for listening! 
Any questions?


